King Fahd University of Petroleum & Minerals

Department of Information and Computer Science

Sample Solution

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total
CLO	1	1	1	1	1	1	1	1	1	1	1	3	3	3	3	3	3	2	2	2	
Max	5	5	5	5	5	5	5	5	4	4	4	3	3	3	3	3	3	10	10	10	100
Earned																					

Question 1: [5 Points]

What is the contrapositive of the conditional statement: "If it is hot, I will go swimming"?

Question 2: [5 Points]

Show that if $p \oplus p$ is a tautology, a contradiction, or a contingency.

Question 3: [5 Points]

Are these system specifications consistent? Why? Why not?

- a. If students can access the file system, then they can save new files.
- b. Whenever the operating system is being upgraded, students cannot access the file system.
- c. If students cannot save new files, then the operating system is not being upgraded.

Question 4: [5 Points]

Recall inhabitants of the island of knights and knaves. You encounter two people, A and B. A says "B is a knave" and B says "The two of us are both knights." Determine what A and B are.

Question 5: [5 Points]

Show that if $(\neg s \land (r \rightarrow s)) \rightarrow \neg r is$ a tautology, a contradiction, or a contingency.

Question 6: [5 Points]

Determine whether the compound proposition $(r \to s) \land (r \to \neg s) \land (\neg r \to s) \land (\neg r \to \neg s)$ is satisfiable.

Question 7: [5 Points]

The domain of the propositional function Q(x) consists of the integers 1, 2, 3, 4, and 5. Express the statement

$$\forall x ((x \neq 3) \rightarrow Q(x)) \lor \exists x \lnot Q(x)$$

without using quantifiers, instead using only negations, disjunctions, and conjunctions.

Question 8: [5 Points]

Translate the statement:

"Nothing is in the correct place and is in excellent condition" into a logical expression using predicates, quantifiers, and logical connectives.

Question 9: [4 Points]

Let P(x) be "x is a baby" and Q(x) be "x is logical". Suppose that the domain consists of all people. Express the statement "Babies are illogical" using quantifiers; logical connectives; and P(x) and Q(x).

Question 10: [4 Points]

Suppose the domain of P(x, y) consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Express the statement $\exists x \forall y \ P(x, y)$ using disjunctions and conjunctions.

Question 11: [4 Points]

Rewrite the following statement so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).

$$\neg \exists y (Q(y) \land \forall x \neg R(x, y)).$$

Question 12: [3 Points]

What is the cardinality of $\{a, \{a\}, \{a, \{a\}\}\}\}$?

Question 13: [3 Points]

If A and B are sets then what is the value of $A \cap (B - A)$

Question 14: [3 Points]

Is the following statement **TRUE** or **FALSE**?

$$\{x\} \subseteq \{x\}$$
 and $\{x\} \in \{x\}$.

Question 15: [3 Points]

Is the following statement **TRUE** or **FALSE**?

If
$$A = \{a, b, c\}$$
, $B = \{x, y\}$, and $C = \{0, 1\}$ then $C \times B \times A = C \times A \times B$.

Question 16: [3 Points]

Is the following statement **TRUE** or **FALSE**?

If A and B are sets then $A - B \subseteq A$.

Question 17: [3 Points]

Is the following statement **TRUE** or **FALSE**?

If A, B, and C are sets then $(A - B) - C \subseteq A - C$.

Question 18: [10 Points]

Given the premises: $p \to (q \land r)$, $s \to r$, and $r \to p$. show that $s \to q$.

RULES OF	INFERENCE
p	
	() 11 m
1	(Addition)
<i>p</i> ∧ <i>q</i>	
∴ p	(Simplification)
p	
q	
	(Conjugation)
$p \land q$	(Conjunction)
$p \rightarrow q$	
	(Modus ponens)
$\neg q$	
$p \rightarrow q$	
∴ ¬p	(Modus tollens)
$p \rightarrow q$,
$q \rightarrow r$	
	(77 - 1 - 1 - 1 - 1 - 1
	(Hypothetical syllogism)
$p \lor q$ $\neg p$	
∴ q	(Disjunctive syllogism)
$p \lor q$	
$\neg p \lor r$	
∴ q∨r	(Resolution)

Question 19: [10 Points]

Prove that the difference of an even integer minus an odd integer is odd. Use direct proof.

Question 20: [10 Points]

Using membership table, Prove that $(A_1 \cap A_2) \cup B = (A_1 \cup B) \cap (A_2 \cup B)$, for every sets A_1, A_2, B .